

LA-UR-21-22627

Approved for public release; distribution is unlimited.

Title: Material and Stack Up Models

Author(s): Wilcox, Trevor

Fleming, Ian John Dickert, Kyle Phillip

Key, Brian P.

Duran-Cash, Beverly R. Koster, James Edward

Intended for: Briefing to NNSA Sponsor

Issued: 2021-03-17

EST.1943 -

Material and Stack Up Models

Pending LA-UR review. These charts were determined unclassified by Erik F. Shores, XTD-SS GL.

Foundational Science

Trevor Wilcox
Ian Fleming
Kyle Dickert
Brian Key
Beverly Duran-Cash
Jim Koster
March 16, 2021

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

BLUF Three stackups were calculated (drawings not to scale)

Materials Modeled and Key Notes:

Aluminum 5083 - New Modified Johnson Cook Model experimentally validated (documented)

Aramid - EOS: Epoxy SESAME, Strength: EP, Fixed yield strength, Varied shear modulus to match experimental data (documented)

A36 Steel - EOS: Us/Up model, Strength: Johnson-Cook, Fracture: Johnson-Cook

Polyurethane - EOS: SESAME 7561, Strength: Elastic-Plastic, Fracture: Pmin

Phenolic - EOS: SESAME 7542, Strength: Elastic-Plastic ,Fracture: Pmin

Elastomer - Modeled as Sylgard, EOS: SESAME 7931, No strength or fracture model

HTPB - New Material Properties (documented), Mie-Gruneisen EOS, EP strength, No burn

Fragments - Stackup #1 has residual velocity of 10 m/s following last Al layer, Stackup #2, #3, had fragments reach HTPB

Detailed Outline

- Modified Johnson Cook
- Aluminum 5083
- Aramid
- HTPB
- Other material models
- Stack ups
- Results
- Concluding remarks

Modified Johnson Cook (MJC)

- MJC Strength model added to PAGOSA
- MJC Damage model added to PAGOSA
- MJC Strength removes natural log

•
$$Y = [A + B(\varepsilon^p)^n](1 + \dot{\varepsilon}^*)^C(1 - T^{*m})$$

MJC Damage remove natural log

•
$$e^f = (D_1 + D_2 e^{D_3 \sigma^*})(1 + \dot{\varepsilon}^*)^{D_4}(1 + D_5 T^*)$$

1. A. H. Clausen and et al., Flow and Fracture Characteristics of Aluminum Alloy AA5083-H116 as Function of Strain Rate, Temperature and Triaxiality, Mat. Sci. Eng A364 p 260-272, 2004.

Aluminum 5083 Model

- Model parameters were taken from [2]
 - rho=2.7 g/cc, A=167 MPa, B=596 MPa, n=0.551, C=0.001, m=0.859
 - D1=0.0261, D2=0.263, D3=-0.349, D4=0.147, D5=16.8
- New MJC model was compared to experimental data [2]

2. T. Borvik and et al., Perforation of AA5083-H116 Aluminum Plates with Conical-Nose Steel Projectiles— Experimental Study, Int. J. Imp. Eng. V 30 p 367-384, 2004.

Aramid Model

- Epoxy SESAME EOS
- EP Strength
- Fixed yield strength
- Varied shear modulus to match experimental data [3]
- Rho of 1.65 g/cc is higher than expected application

Given the lack of fiber orientation, layup, and density this is a conservative approach

3. C.Y. Tham and et al., Ballistic Impact of KEVLAR Helmet: Experiment and Simulations, Int. J. Imp. Eng. V 35 p 304-318, 2008.

HTPB Model

- Material properties from [4]
 - Mie-Gruneisen EOS
 - EP strength
- No burn

4. D. A. Crawford, A Model for the Energetic Response of 1.3 Propellants Under Shock Loading Conditions, SAND2009-6338, 2009.

A36 Steel Model

- EOS: Us/Up model
- Strength: Johnson-Cook
- Fracture: Johnson-Cook

Polyurethane Model

- EOS: SESAME 7561
- Strength: Elastic-Plastic
- Fracture: P_{min}

Phenolic Model

- EOS: SESAME 7542
- Strength: Elastic-Plastic
- Fracture: P_{min}

Elastomer Model (Modeled as Sylgard 184)

- EOS: SESAME 7931
- No strength or fracture model

Stack Up #3 Result for 350g Fragment

Stack Up Result for 350g Fragment Video

Concluding Remarks

- More details on Aramid will improve model
- Use MATCH or other burn model to predict HTPB response
- Experiments for model verification have been completed and we will work on validation efforts